Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 89(1): 807-812, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28105847

RESUMO

A compact ultrahigh-pressure nanoflow liquid chromatograph (LC) was developed with the purpose in mind of creating a portable system that could be easily moved to various testing locations or placed in close proximity to other instruments for optimal coupling, such as with mass spectrometry (MS). The system utilized innovative nanoflow pumps integrated with a very low volume stop-flow injector and mixing tee. The system weighed only 5.9 kg (13 lbs) or 4.5 kg (10 lbs) without a controller and could hold up to 1100 bar (16000 psi) of pressure. The total volume pump capacity was 60 µL. In this study, the sample injection volume was determined by either a 60 nL internal sample groove machined in a high-pressure valve rotor or by a 1 µL external sample loop, although other sample grooves or loops could be selected. The gradient dwell volume was approximately 640 nL, which allowed significant reduction in sample analysis time. Gradient performance was evaluated by determining the gradient step accuracy. A low RSD (0.6%, n = 4) was obtained for day-to-day experiments. Linear gradient reproducibility was evaluated by separating a three-component polycyclic aromatic hydrocarbon mixture on a commercial 150 µm inner diameter capillary column packed with 1.7 µm particles. Good retention-time reproducibility (RSD < 0.17%) demonstrated that the pumping system could successfully generate ultrahigh pressures for use in capillary LC. The system was successfully coupled to an LTQ Orbitrap MS in a simple and efficient way; LC-MS of a trypsin-digested bovine serum albumin (BSA) sample provided narrow peaks, short dwell time, and good peptide coverage.


Assuntos
Nanotecnologia , Soroalbumina Bovina/análise , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Pressão , Espectrofotometria Ultravioleta
2.
Anal Chem ; 78(3): 858-64, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16448061

RESUMO

The use of ultrahigh pressures in liquid chromatography (UHPLC) imposes stringent requirements on hardware such as pumps, valves, injectors, connecting tubing, and columns. One of the most difficult components of the UHPLC system to develop has been the sample injector. Static-split injection, which can be performed at pressures up to 6900 bar (100,000 psi), consumes a large sample volume and is very irreproducible. A pressure-balanced injection valve provided better reproducibility, shorter injection time, reduced sample consumption, and greater ease of use; however, it could only withstand pressures up to approximately 1000 bar (15,000 psi). In this study, a new injection valve assembly that can operate at pressures as high as 2070 bar (30,000 psi) was evaluated for UHPLC. This assembly contains six miniature electronically controlled needle valves to provide accurate and precise volumes for introduction into the capillary LC column. It was found that sample volumes as small as several tenths of a nanoliter can be injected, which are comparable to the results obtained from the static-split injector. The reproducibilities of retention time, efficiency, and peak area were investigated, and the results showed that the relative standard deviations of these parameters were small enough for quantitative analyses. Separation experiments using the UHPLC system with this new injection valve assembly showed that this new injector is suitable for both isocratic and gradient operation modes. A newly designed capillary connector was used at a pressure as high as 2070 bar (30,000 psi).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...